
Canonical partition functions of freely jointed chains

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 1949

(http://iopscience.iop.org/0305-4470/31/8/008)

Download details:

IP Address: 171.66.16.104

The article was downloaded on 02/06/2010 at 07:23

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) 1949–1964. Printed in the UK PII: S0305-4470(98)86345-2

Canonical partition functions of freely jointed chains
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91405 Orsay Cedex, France
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Abstract. The freely jointed chain is a simple off-lattice ideal model of a heteropolymer.
We show how to compute the canonical partition function of this model exactly for all
physical primary structures, degree of polymerization and space dimensions greater than or
equal to 2. The canonical partition function of this model of a heteropolymer has an analytical
expression involving a complicated multiple hypergeometric function. To obtain some accurate
approximations we develop and use the independent motion approximation (IMA).

1. Introduction

In this paper we show that the canonical partition function of one off-lattice model of
an ideal polymer, the freely jointed chain, has an exact analytical expression. The freely
jointed chain model exhibits one of the principal features of the polymers, namely linear
connection of the monomers. This model represents a chain of massive punctual monomers
each jointed with two nearest neighbours. In this model, the monomers interact neither with
solvent molecules, nor with other monomers of the chain; the unique effective interaction
between the monomers is the interaction which imposes the condition that the distance
between two nearest neighbours along the chain is constant. Because these interactions are
simply holomonic constraints, the canonical partition function of the freely jointed chain
can be expressed with the Maxwell–Boltzmann distribution of the ideal gas interpreted over
a subsetϕr (the restricted phase space) of the phase spaceϕ of the ideal gas. This very
simple model, first studied in the case of homopolymers [1, 2], can be extended to build a
model of heteropolymers.

A heteropolymer is firstly characterized by its primary structure, i.e. by the order in
which monomers of different kinds are connected. If we define the kind of a monomer
appearing in the polymer by a letter from the set{A,B,C, . . .}, the primary structure of the
heteropolymer is then defined by a mappingσ of [0, N ] onto {A,B,C, . . .} which associates
a letter from the set{A,B,C, . . .} with thenth position in the chain, giving the kind of the
monomer numberedn. Formally the mappingσ is defined by

σ : [0, N ] −→ {A,B,C, . . .}
n 7−→ Xn.

(1)

For instance, the mappingσ corresponding to a homopolymer is defined by:∀ n ∈
[0, N ], Xn ≡ A, and for the primary structure of a diblock copolymer as:∀ n ∈ [0, N ], if
n < N1 Xn ≡ A and if n > N1, Xn ≡ B.

† Laboratoire associé au Centre National de la Recherche Scientifique (URA 63).
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For the ideal heteropolymer described as a freely jointed chain there are only two
relevant parameters: the mass of the monomers and the length of the bonds linking the
two nearest neighbours. Thus to characterize the primary structure{Xn}06n6N in the freely
jointed chain model one need use only two sequences:{mn}06n6N the mass sequence and
{an}16n6N the sequence of the bond lengths. Each element of the bond lengths sequence is
defined by

an = aXnXn+1 = aσ(n)σ (n+1) = aσ(n+1)σ (n). (2)

The phase spaceϕ{Xn} of the sequence{Xn}06n6N of linearly connected monomers
is contained inϕN , the phase space of the system of disconnected monomers. Thus the
canonical partition function of any ideal heteropolymers, as defined previously, is given by

Q
(d)
{Xn}(σ ) =

1

2!

1

h(N+1)d

∫
ϕ{Xn}

N∏
n=0

drn dpn exp

(
−β

2

N∑
n=0

p2
n

mn

)
. (3)

The equilibrium properties of the heteropolymer, and in particular the canonical partition
function, should be independents of the choice made in the labelling direction of the
monomers. According to equation (1), one can formally define the primary structure as
σ ∗([0, N ]) = {Xn}06n6N ; on the other hand, the mappingσ ′ which labels the monomers in
the opposite direction (σ ′∗([0, N ]) = {X′n}06n6N , with ∀ n,X′n ≡ XN−n) should define the
same primary structure, i.e. the same heteropolymer. Thus the canonical partition function
Q
(d)
{Xn}(σ ) must be invariant under the transformationσ → σ ′:

Q
(d)
{Xn}(σ ) = Q

(d)
{Xn}(σ

′) = Q(d)
{Xn}.

For homopolymers, the canonical partition function has been completely computed in
a previous paper [3]. In this paper we extend the computation done in [3] and we show
that the canonical partition function given by equation (3) can be computed exactly for all
degree of polymerizationN , for any primary structure{Xn}06n6N and for all dimension
d > 2 of the space in which the polymer is embedded.

2. Computation of the canonical partition function

The computation ofQ(d)
{Xn} from equation (3) is difficult because the topological structure

of ϕ{Xn} is complicated. A parametrization ofϕ{Xn} with a set of continuous variables is
not easy to construct. For an explicit computation ofQ

(d)
{Xn} we can express the integral

of equation (3) as the average of a distributionD{Xn} in the canonical ensemble of the
ideal gas, such that the distributionD{Xn} takes into account the holonomic constraints and
primary structure of the heteropolymer. Thus equation (3) can be written as

Q
(d)
{Xn} =

V N+1

C{Xn}

( N∏
n=0

(
mnkT

2πh̄2

) 1
2d
)
〈D{Xn}〉ϕN (4)

with

〈D{Xn}〉ϕN =

∫
ϕN

N∏
n=0

drn dpn D{Xn} exp

(
−β

2

N∑
n=0

p2
n

mn

)
∫
ϕN

N∏
n=0

drn dpn exp

(
−β

2

N∑
n=0

p2
n

mn

) (5)
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whereC{Xn} is the indiscernability factor of the disconnected gas of monomers. If there
are p different kinds of monomers in the polymer, and if for each kindk there areNk
monomers in the primary structure, thenC{Xn} =

∏p

k=1Nk!.
The distributionD{Xn} is defined by the geometrical properties of the molecule.

According to the model described in section 1, the first contribution toD{Xn} is given by
the constant length of the bonds in the linear connection of monomers. These geometrical
constraints may be expressed as

N∏
i=1

αiδ((ri−1− ri )2− a2
i )

where theαi are constants which offset the physical dimension of the Dirac distributions.
According to the general laws of classical mechanics, the relative velocity of the monomer
i compared with the monomeri − 1 (i.e. vi−1 − vi) should be perpendicular to the bond
ri−1− ri [3, 4]. These dynamical constraints produce a second contribution toD{Xn} that
one can also express in terms of a product

N∏
i=1

λiδ
(
(vi−1− vi ) · (ri−1− ri )

)
where theλi play the same role as theαi . Both sets of constants{αi} and {λi} should be
determined by choosing a convention for the computation of the canonical partition function.
In this paper we chose to take the partition function of a particle in a box of lengthL in a
space of dimensiond equal to the partition function of a particle moving on a hypersphere
of radiusL in a space of dimension(d + 1). This convention and an explicit computation
of the canonical partition function of the diatomic molecule (N = 1) gives

αi = a2
i

λi = h
(

1

mi−1
+ 1

mi

)
= h

m∗i
wherem∗i is the reduced mass of the two-body problem. The expressions of the dynamical
constraints via the Dirac distributions given above are in agreement with the classical
mechanics only whend > 2. With both contributions, the distributionD{Xn} takes the
form

D{Xn} = C{Xn}
2!

( N∏
i=1

a2
i

h

m∗i

) N∏
i=1

δ
(
(ri−1− ri )2− a2

i

)
δ
(
(vi−1− vi ) · (ri−1− ri )

)
. (6)

With equations (4) and (5) it is possible to computeQ(d)
{Xn} in the phase spaceϕN by using the

distributionD{Xn} given by equation (6). The natural variables appearing in the definition
of D{Xn} are the bond vectors and the velocities defined by

un = anûn = rn−1− rn 16 n 6 N

vn = 1

mn
pn 06 n 6 N.

(7)

The dynamical constraints are expressed as

δ
(
(vn − vn−1) · anûn

) = 1

2π

∫ +∞
−∞

d�n exp
(
j�nanûn · (vn − vn−1)

)
(8)

and the integral over the velocities is a Gaussian integral. The integration overr0 is
performed by considering that the volume of the box in which the polymer is contained
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is very large compared with the radius of giration of the polymer. Because the dynamical
constraints induced a non-quadratic term in the Gaussian weight, the computation of the
Gaussian integral introduces a coupling between neighbouring bond vectors. Thus,Q

(d)
{Xn}

takes the form

Q
(d)
{Xn} = Z({mn}, {an}; T , V )

∫ N∏
n=1

d�n exp

(
− 1

2β

N∑
n=1

a2
n

m∗n
�2
n

)

×
∫ N∏

n=1

dûn δ(û
2
n − 1) exp

(
1

2β

N∑
n=2

1

mn−1
(an−1�n−1ûn−1) · (an�nûn)

)
(9)

where

Z({mn}, {an}; T , V ) = 1

2

(
1

2π

) 1
2d(N+1)

h̄N

h̄(N+1)d

(
m0

β

) 1
2d
( N∏
n=1

(mn)
1
2d

m∗n

(
a2
n

β

) 1
2d
)
V.

This coupling and the integral over the bond vectors are similar to the coupling that appears
in the O(d) spin model in one dimension with nearest-neighbour interactions studied by
Stanley [5]. The integral over the set{ûn} in (9) can be computed following the procedure
used by Stanley. In analogy with the spin model, we consider that the spin variables are
the bond vectorŝun and coupling constants defined asβyn = �n−1�nan−1an/mn−1, then
the integral related to the canonical partition function of the spin model is

U
(d)
{Xn} =

∫ N∏
n=1

dûn δ(û
2
n − 1) exp

(
1

2β

N∑
n=2

1

mn−1
(an−1�n−1ûn−1) · (an�nûn)

)
. (10)

This latter integral is exactly evaluated by the same computations as was done for the spin
system [5]; it gives

U
(d)
{Xn} = Sd(1)

(
1

2

)(N−1)

(2π)
1
2d(N−1)

N∏
n=2

y
(1− 1

2d)
n I 1

2d−1(yn) (11)

with Iµ the modified Bessel function of the first kind.
Thus the canonical partition function of the model described in section 1 is given by

Q
(d)
{Xn} = Sd(1)

(
m0

4π2βh̄2

) 1
2d

V

(
N∏
n=1

((
1

2

)1/(d−1)(
a2
n

βh̄2

)) 1
2 (d−1)

(mn)
1
2d

(m∗n)
1
2

)
J
(d)
{Xn} (12)

whereJ (d){Xn} is defined as

J
(d)
{Xn} =

N∏
n=2

(√
4m∗n−1m

∗
n

m2
n−1

)(1− 1
2d) ∫ N∏

n=1

dγn
N∏
n=2

(γn−1γn)
(1− 1

2d) exp

(
−

N∑
n=1

γ 2
n

)

× I( 1
2d−1)

(√
4m∗n−1m

∗
n

m2
n−1

γn−1γn

)
. (13)

In what follows we will sometimes refer to the latter integral as the alphabetical integral,
because it contains all the non-trivial dependence with the primary structure defined by the
alphabetical ordering of the applicationσ . To cancel the coupling betweenγn−1 andγn we
make the transformation

ωn =
√

4m∗n−1m
∗
n

m2
n−1

γn−1γn for 26 n 6 N

ω1 = γ1

(14)
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which is inverted as

γn = Anωn for 26 n 6 N
γ1 = ω1

(15)

where we have set

An =
(
√

2m∗1)
(−1)(n−1)√

2m∗n

(n−1)∏
p=1

(
ωn−p
mn−p

)(−1)p

. (16)

The Jacobian matrix of this transformation is triangular (An depends only onωp with
p 6 n− 1), thus the Jacobian is

det(Ja(ωi)) =
N∏
n=2

An. (17)

Using this transformation, the alphabetical integral is expressed as

J
(d)
{Xn} =

∫
dω1 exp(−ω2

1)

∫ N∏
n=2

dωn Anω
(1− 1

2d)
n I( 1

2d−1)(ωn) exp(−A2
nω

2
n). (18)

From the definition ofAn, we see easily that these factors verify the recurrence relation

1

A2
n

= 4

(
m∗n−1m

∗
n

m2
n−1

)
A2
n−1ω

2
n−1 for 36 n 6 N. (19)

All the correlations induced by the linear connection of the chain is implicitly contains in
factor AN because of the latter recurrence relation. This relation is important because it
allows one to obtain an analytical result, which holds all the correlations due to the linear
connection of the monomers.

To make the integration over the variables{ωn}, we integrate overωN , we use the
recurrence relation to expressAN with AN−1 andωN−1, then we integrate overωN−1 and
the method is repeated untilN − p = 2. We begin by extracting the integral overωN from
equation (18) as

f
(d)
XN−1XN

= AN
∫

dωN ω
(1− 1

2d)

N I( 1
2d−1)(ωN) exp(−A2

Nω
2
N) (20)

the Bessel function is expressed with the integral representation

Iµ(x) =
( 1

2x)
µ

0(µ+ 1
2)0(

1
2)

∫ 1

−1
(1− t2)(µ− 1

2 )ext dt

thus we obtain

f
(d)
XN−1XN

= ( 1
2)
( 1

2d−2)

0( d−1
2 )0( 1

2)
AN

∫ +∞
−∞

dωN

∫ 1

−1
(1− t2N)

1
2 (d−3)e−A

2
Nω

2
N+ωN tN dtN . (21)

After a Gaussian integration overωN we have

f
(d)
XN−1XN

= ( 1
2)

1
2d

0( d−1
2 )

∫ 1

0
dtN (1− t2N)

1
2 (d−3) exp

(
− 1

4A2
N

t2N

)
. (22)

We carry out a series expansion of the exponential and perform the integration overtN ;
taking the recurrence relation (19), it follows that

f
(d)
XN−1XN

=
(

1

2

)( 1
2d−1) ∞∑

n=0

1

n!

0(n+ 1
2)

0(n+ d
2)

(
m∗N−1m

∗
N

m2
N−1

)n
A2n
N−1ω

2n
N−1. (23)
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Substitutingf (d)XN−1XN
in J (d){Xn}, f

(d)
XN−2XN−1

is computed as

f
(d)
XN−2XN−1

=
(

1

2

)( 1
2d−1) ∞∑

n=0

1

n!

0(n+ 1
2)

0(n+ d
2)

(
m∗N−1m

∗
N

m2
N−1

)n
A2n
N−1AN−1

× ( 1
2)
( 1

2d−1)

0( d−1
2 )0( 1

2)

∫ 1

−1
dtN−1 (1− t2N−1)

1
2 (d−3)

×
∫ +∞
−∞

dωN−1 ω
2n
N−1 exp(−A2

N−1ω
2
N−1+ tN−1ωN−1). (24)

Carrying out the same computations forf (d)XN−2XN−1
as those done forf (d)XN−1XN

, it follows that

f
(d)
XN−2XN−1

=
(

1

2

)( 1
2d−1) ∞∑

n1=0

1

n1!

0(n1+ 1
2)

0(n1+ d
2)

(
m∗N−1m

∗
N

m2
N−1

)n1

×
(

1

2

)( 1
2d−1) ∞∑

n2=0

1

n2!

0(n1+ n2+ 1
2)

0(n2+ d
2)

(
m∗N−2m

∗
N−1

m2
N−2

)n2

A
2n2
N−2ω

2n2
N−2. (25)

In the latter equation, one can note that the dependence off
(d)
XN−2XN−1

onωN−2 has the same

structure as the dependence off
(d)
XN−1XN

onωN−1 (see equation (23)), thus we can repeat the

method untilN − p = 2, and finally by the definition off (d)X0X1
we find

J
(d)
{Xn} = f

(d)
X0X1
=
∫ +∞
−∞

dω1 f
(d)
X1X2

exp(−ω2
1). (26)

This series expansion shows that the alphabetical integralJ
(d)
{Xn} is the value that a multiple

variables functiong(d)N (x) takes at a point defined by

(xn)16n6N−1 =
(
m∗N−nm

∗
N−n+1

m2
N−n

)
16n6N−1

. (27)

One can easily see from the definition of thexi that we recover the result obtained for the
homopolymer [3] by letting all masses be equal (i.e.∀ i, mi = m ⇒ xi = 1

4). The function

g
(d)
N (x) which gives the value of the alphabetical integralJ

(d)
{Xn} can be formulated with the

help of a multiple hypergeometric function[N−1]H [N ]
e ( 1

2; d2; x1, . . . , xN−1) by setting

J
(d)
{Xn} = g

(d)
N (x) = g(d)N (0) [N−1]H [N ]

e ( 1
2; d2; x1, . . . , xN−1). (28)

The value taken byg(d)N for x = 0 is

g
(d)
N (0) =

(
1

2

)( 1
2d−1)(N−1)

0( 1
2)

(
0( 1

2)

0( d2)

)(N−1)

(29)

and the multiple hypergeometric function[N−1]H [N ]
e can be defined as

[N−1]H [N ]
e ( 1

2; d2;x) =
∞∑
n1=0

1

n1!

(n1,
1
2)

(n1,
d
2)
(x1)

n1

×
∞∑
n2=0

1

n2!

(n1+ n2,
1
2)

(n2,
d
2)

(x2)
n2
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...

×
∞∑
np=0

1

np!

(np−1+ np, 1
2)

(np,
d
2)

(xp)
np

...

×
∞∑

nN−2=0

1

nN−2!

(nN−3+ nN−2,
1
2)

(nN−2,
d
2)

(x(N−2))
nN−2

×
∞∑

nN−1=0

1

nN−1!

(nN−2+ nN−1,
1
2)

(nN−1,
d
2)

(nN−1,
1
2)(x(N−1))

nN−1 (30)

wherexp is thepth component of a vectorx of a Euclidean space of dimension(N − 1),
and(n, a) = 0(n+ a)/0(a).

In summary, the canonical partition function of any freely jointed chain of primary
structure{Xn}06n6N as defined in section 1 is

Q
(d)
{Xn} = Q(d)

� (V , T )
N∏
n=1

(
T

TXn−1Xn

) 1
2 (d−1)

[N−1]H [N ]
e ( 1

2; d2;x) (31)

where 

Q(d)
� (V , T ) =

(√
m0mN

2πh̄2 kT

) 1
2d

V

TXn−1Xn = 2

(
0(d2)

0( 1
2)

(m∗n)
1
2

(mnmn−1)
1
4d

)2/(d−1)
h̄2

ka2
n

(xn)16n6N−1 =
(
m∗N−nm

∗
N−n+1

m2
N−n

)
16n6N−1

.

(32)

With these definitions, it is a straightforward matter to verify thatQ
(d)
{Xn} is invariant when

the numbering direction of monomers is reversed. This invariance gives a symmetry
property to the multiple hypergeometric function[N−1]H [N ]

e , this function is invariant by
the transformationxi → xN−i . Because the integral (3) is absolutely convergent, and
because we have used only analytical computations, the hypergeometric function[N−1]H [N ]

e

should be defined for all physical sequences. This argument is a physical one, but in order
to show rigorously that the definition of[N−1]H [N ]

e by the multiple power series (30) is
meaningful, we need to show that for any physical sequence (i.e.{mn}06n6N ∈ R+∗) the
point defined by equation (27) is in the region of convergence of[N−1]H [N ]

e . In section 3
we demonstrate this by using the Horn criterion on the multiple power series (30).

3. Region of convergence of the multiple hypergeometric series[N−1]H [N ]
e

The function[N−1]H [N ]
e , defined by the series (30), gives the contribution induced by linear

connection of masses{mn}06n6N to the canonical partition function of the sequence{Xn}.
One needs to verify that for all physical sequences the value taken by[N−1]H [N ]

e is defined.
In this section we show that this is always true for all sequences{Xn}06n6N with the
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associated mass sequence{mn}06n6N ∈ R+∗. We use the Horn criterion [6, 7] to define the
region of convergence of a multiple power series

∞∑
k1,...,kn=0

Ak1,...,knx
k1
1 · · · xknn . (33)

We call the positive quantitiesr1, r2, . . . , rn the associated radii of convergence of the series,
if this series is absolutely convergent when|x1| < r1, . . . , |xn| < rn and divergent when
|x1| > r1, . . . , |xn| > rn. In the absolute space(r1, r2, . . . , rn) the points represented by
the ri lie on a hypersurfaceH , provided thatH is interior toD, the unit hypercube in the
positive hyperoctant with one corner coinciding with the origin inri-space, and with its
edges parallel to the coordinate axis.H has the parametric representation

ri = |8i(k1, . . . , kn)|−1 ki ∈ R+

with

8i(k1, . . . , kn) = lim
ε→∞ fi(εk1, . . . , εkn)

where

fi(k1, . . . , kn) = Ak1,...,ki−1,ki+1,ki+1,...,kn

Ak1,...,kn

.

For the multiple power series defined by equation (30) we have

f1(n1, n2) =
(n1+ 1

2)(n1+ n2+ 1
2)

(n1+ 1)(n1+ d
2)

fi(ni−1, ni, ni+1) =
(ni−1+ ni + 1

2)(ni + ni+1+ 1
2)

(ni + 1)(ni + d
2)

for 26 i 6 N − 2

fN−1(nN−2, nN−1) =
(nN−2+ nN−1+ 1

2)(nN−1+ 1
2)

(nN−1+ 1)(nN−1+ d
2)

(34)

thus

81(n1, n2) = 1+ n2

n1

8i(ni−1, ni, ni+1) =
(

1+ ni−1

ni

)(
1+ ni+1

ni

)
for 26 i 6 N − 2

8N−1(nN−2, nN−1) = 1+ nN−2

nN−1
.

(35)

Settingti = ni−1/ni , the parametric representation of the hypersurfaceH is given by

r1 = t2

1+ t2
ri = ti+1

(1+ ti)(1+ ti+1)
for 26 i 6 N − 2

rN−1 = 1

1+ tN−1
.

(36)

The Horn criterion tells us that the series are convergent at the point(xi)16i6N−1, if
∃(ti)26i6N−1 ∈ (R+)(N−2) : (∀ i, 16 i 6 N − 1, xi < ri).
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The point where the convergence of the series (30) is interesting is the point given by
equation (27). Letmn+1 = cnmn, thus equation (27) becomes

∀ i, 16 i 6 N − 1, xi = ci

(1+ ci)(1+ ci−1)
. (37)

To show that[N−1]H [N ]
e is defined for all physical sequences (i.e.∀ {mn}06n6N ∈ R+∗), it

is enough to show that the proposition

(∀ (cn)06n6N−1 ∈ (R+∗)N)(∃(tn)26n6N−1 ∈ (R+)N−2) : (∀ i, 16 i 6 N − 1, xi < ri)

(38)

is true.
In seeking to establish this property, we can see that

if ∀ i, 26 i 6 N − 1, ti = ci−1 then


x1 < r1

xi = ri for 26 i 6 N − 2

xN−1 < rN−1.

(39)

The proposition (39) would be sufficient to show that the inertial point of the sequence
{Xn}06n6N is in the region of convergence of the series, if we were able to define the interior
of the region of convergence from equation (36). However, with the parametrized equation
of H , one cannot easily define two separate regions of the space with the hypersurface, so
it is necessary to verify the Horn criterion.

We defineτ2 by the relation
τ2

1+ τ2
= c1

(1+ c1)(1+ c0)
.

Thus, if τ2 < t2 < c1 thenx1 < r1, and

(∀ t3 ∈ R+∗)
(
x2 <

t3

(1+ t3)
1

(1+ τ2)
= r2

)
.

We defineτ3 in the same way with

τ3

(1+ τ3)
= c2

(1+ c2)

(1+ τ2)

(1+ c1)
.

Thus the construction ofτi is done inductively as follows:

τi

(1+ τi) =
ci−1

(1+ ci−1)

(1+ τi−1)

(1+ ci−2)
.

If ∀ n, 2 6 n 6 i, τn < tn < cn−1, then we have∀ n, 2 6 n 6 i − 1, xn < rn and by
construction

(∀ ti+1 ∈ R+∗)
(
xi <

ti+1

(1+ ti+1)

1

(1+ τi) = ri
)
.

If τN−1 < tN−1 < cN−2 then∀ n, 26 n 6 N − 2, xn < rn, and

rN−1 = 1

1+ tN−1
>

1

1+ cN−2
>

1

(1+ cN−2)

cN−1

(1+ cN−1)
= xN−1.

Because one can always build the sequenceτi inductively as shown previously, in summary
we have the proposition

if ∀ i, 26 i 6 N − 1, τi < ti < ci−1 then


x1 < r1

xi < ri for 26 i 6 N − 2

xN−1 < rN−1

(40)
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which establish that the proposition (38) is true.
The analytical expressions for theτi are complicated because they depend on

(cn)06n6i−1.
This demonstration also shows that the region of convergence of the multiple

hypergeometric function[N−1]H [N ]
e is not the empty set, nor does it reduce to one point, so

the definition of[N−1]H [N ]
e from the multiple series (30) is meaningful.

This result is important because it shows that for all ideal heteropolymers defined as
freely jointed chains (see section 1) one can compute the canonical partition function, which
is given by equations (30), (31) and (32), analytically.

For small sequences, one can relate[N−1]H [N ]
e to the well known hypergeometric

functions: for instance, forN = 3, 4 and 5, we have
{X0, X1, X2} → [1]H [2]

e (
1
2; d2;x) = 2F1(

1
2,

1
2; d2; x1)

{X0, X1, X2, X3} → [2]H [3]
e (

1
2; d2;x) = F2(

1
2,

1
2,

1
2; d2 , d2; x1, x2)

{X0, X1, X2, X3, X4} → [3]H [4]
e (

1
2; d2;x) = FK( 1

2,
1
2,

1
2,

1
2; d2 , d2 , d2; x1, x2, x3)

(41)

where thexi are given by equation (32),F2 is the second Appell double hypergeometric
function andFK the triple hypergeometric function of Lauricella–Saran.

The analytical expression of[N−1]H [N ]
e is complicated and not easy to use in applications.

In section 4 we give a non-perturbative iterative scheme of approximations which gives very
good estimates of the function[N−1]H [N ]

e .

4. Independent motions approximation (IMA)

Since we know the multiple power series expansion of[N−1]H [N ]
e , we know all the values

taken by the derivatives of[N−1]H [N ]
e at the origin, and in particular we know the restrictions

of this function to each axis exactly. These restrictions according to equation (30) are given
by

16 i 6 N − 2 [N−1]H [N ]
e ( 1

2; d2; xi êi ) = 1F1(
1
2; d2; xi)

i = N − 1 [N−1]H [N ]
e ( 1

2; d2; xN−1êN−1) = 2F1(
1
2,

1
2; d2; xN−1).

Thus a crude approximation of this function is given by

[N−1]H [N ]
e ( 1

2; d2; x1, . . . , xN−1) ∼ 2F1(
1
2,

1
2; d2; xN−1)

(N−2∏
i=1

1F1(
1
2; d2; xi)

)
.

This approximation has two major weaknesses: the symmetry property of[N−1]H [N ]
e is not

fulfilled and this procedure does not allow one to find a general scheme to obtain more
accurate approximations [3].

To overcome both weaknesses, we use a diagrammatic method which simplifies
the analytical computations and permits one to describe a non-perturbative scheme of
approximation for[N−1]H [N ]

e .
We define the following diagrammatic rules involving sites and lines.

For sites with a multiplicityn:

1

n!

1

(n, d2)
xn ≡ h

n

x

(42a)
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for propagators between two neighbouring sites:

(n+ p, 1
2) ≡

n p

≡
p n

(42b)

and for the ending sites:

x
n

x

≡ (n, 1
2) h

n

x

≡
0

h
n

x

(42c)

With the above diagrammatic rules, the multiple hypergeometric function[N−1]H [N ]
e can

be written as

[N−1]H [N ]
e ( 1

2; d2;x) =
∞∑
n1=0

· · ·
∞∑

nN−1=0

x
n1

x1

h
n2

x2

. . . h
nN−2

xN−2

x
nN−1

xN−1

(43)

The technical difficulties encountered in the computation of[N−1]H [N ]
e are caused by

the coupling between neighbouring sites. In the diagrammatic representation, the coupling
enters the computation via propagators. The natural way to obtain a first approximation
of this function is to cancel the coupling by disconnecting the sites. This can be done
by cutting the propagators. One should remember that the coordinatesxi contains all the
non-trivial information about the primary structure. The arbitrary choice of the labelling
direction of these coordinates during the computation of the canonical partition function,
which favours one direction of labelling for the monomers of the sequence, does not affect
the indisdinguishability of both direction of labelling in the canonical ensemble because of
a special symmetry property of[N−1]H [N ]

e . Therefore, the approximation that we obtain by
cutting the propagators must have this symmetry property.

The diagrammatic rules (42c) and (42b) show how the cutting works. When we cut the
propagator on the left, we take the value 0 for the multiplicityn on the left of the propagator
and we keep the true value ofn for the site on the left of the propagator; for the valuep
of the multiplicity on the right of the propagator, we keep the true value ofp for both the
right side of the propagator and the site. Thus, when one cuts all the propagators of (43)
on the left, we obtain

[N−1]H [N ]
e ( 1

2; d2;x)
∣∣
1(l) =

(N−2)∏
i=1

( ∞∑
n=0

x
n

xi )
×
( ∞∑
nN−1 0

x
nN−1

xN−1)
(44a)

Because of the contribution ofxN−1 in equation (44a), the approximation
[N−1]H [N ]

e ( 1
2; d2;x)

∣∣
1(l) do not have the symmetry property of[N−1]H [N ]

e . To restore this
symmetry one has to cut also the propagators on the right:
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[N−1]H [N ]
e ( 1

2; d2;x)
∣∣
1(r) =

( ∞∑
n1 0

x
n1

x1 )
×

(N−1)∏
i=2

( ∞∑
n=0

x
n

xi )
(44b)

and take the geometrical average of the expressions given by equations (44a) and (44b).
Then we obtain a first approximation of[N−1]H [N ]

e as

[N−1]H [N ]
e ( 1

2; d2;x)
∣∣
1 =

√
[N−1]H

[N ]
e ( 1

2; d2;x)
∣∣
1(r)

[N−1]H
[N ]
e ( 1

2; d2;x)
∣∣
1(l)

=
√

2F1(x1)2F1(xN−1)

1F1(x1)1F1(xN−1)

N−1∏
i=1

1F1(xi) (45)

where we use the notation1F1(x) = 1F1(
1
2; d2; x) and2F1(x) = 2F1(

1
2,

1
2; d2; x). ForN = 2,

one can verify that equation (45) is exactly the same as equation (41).
Because by cutting the propagators we cancel the coupling between sites, this

approximation is equivalent to considering the movement of a monomer in the chain as
being influenced only by the inertia of its closest neighbours in the chain. This is the reason
we call this approximation the independent motions approximation (IMA).

The computations done to obtain equation (45) allow one to build a non-perturbative
iterative scheme of approximations for[N−1]H [N ]

e . In the previous computation we had
cut all the propagators of the diagrammatic representation (43), thus this approximation is
called the first-order IMA. The iterative scheme consist in redefining propagators in analogy
with the conventional renormalization of the full propagator. For the second-order IMA we
define the double propagator by

∞∑
n2=0

h
n1

x1

h
n2

x2

h
n3

x3

≡ x
n1

x1

x2 x
n3

x3

(46)

The latter relation allows one to introduce the diagrammatic rule for the double propagator

n p

x ≡ 2F1(
1
2 + n, 1

2 + p; d2; x). (47)

One can use double propagators to give a new diagrammatic representation of the
function [N−1]H [N ]

e , provided that we distinguish theN even case from theN odd case. For
N even (N = 2P ), the summation over all then2p with 16 p 6 (P − 1) in (43) gives

[2P−1]H [2P ]
e ( 1

2; d2;x) =
∞∑
n1=0

∞∑
n3=0

· · ·
∞∑

n2P−1=0

x
n1

x1

x2 x
n3

x3

. . . x
n2P−3

x2P−3

x2(P−1) x
n2P−1

x2P−1

(48a)
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while for N odd we have

[2P ]H [2P+1]
e ( 1

2; d2;x) =
∞∑
n1=0

∞∑
n3=0

· · ·
∞∑

n2P−1=0

∞∑
n2P=0

x
n1

x1

x2 x
n3

x3

... x
n2P−3

x2P−3

x2(P−1) x
n2P−1

x2P−1

x
n2P

x2P

(48b)

By cutting the double propagators with the same rules as for the single propagators, and
taking the geometric average to restore the symmetry, we obtain the following expressions
for the second-order IMA.
ForN even

[2P−1]H [2P ]
e ( 1

2; d2;x)
∣∣
2 =

√
1F1(x1)1F1(x2P−1)

(P−1)∏
i=1

√
F2(x2i , x2i+1)F2(x2i+1, x2i+2)

(49)

and forN odd

[2P ]H [2P+1]
e (

1

2
; d

2
;x)∣∣2 = √1F1(x1)1F1(x2P )2F1(x1)2F1(x2P )

×
(P−1)∏
i=1

√
F2(x2i , x2i+1)F2(x2i+1, x2i+2). (50)

A generalization of this procedure is straightforward; thepth-order IMA is obtained by the
following steps.

(i) Choose a direction for the labelling of the sites.
(ii) Group the sites by blocks ofp+1 sites according to the chosen direction of labelling, i.e.
the first block contained the sites labelled{n1, n2, . . . , np+1}, the second the sites labelled
{np+2, np+3, . . . , n2p+2}, and so on (if the diagram is composed by a number of sites that
is not divisible byp + 1, we put in the last block less thanp + 1 sites).
(iii) Define a p-uple propagator as done with equation (46) for the double propagator and
define a new diagrammatic rule for thep-uple propagator.
(iv) Then give the new diagrammatic representation of[N−1]H [N ]

e and cut all thep-uple
propagators on the right to obtain[N−1]H [N ]

e

∣∣
p(r)

and next cut them on the left to obtain
[N−1]H [N ]

e

∣∣
p(l)

.
(v) Take the geometrical average:

[N−1]H [N ]
e

∣∣
p(+) =

√
[N−1]H

[N ]
e

∣∣
p(r)

[N−1]H
[N ]
e

∣∣
p(l)
. (51)

(vi) Take the other direction of labelling and repeat steps (ii) to (v) to obtain[N−1]H [N ]
e

∣∣
p(−).

(vii) The pth-order IMA of [N−1]H [N ]
e is then given by the geometrical average:

[N−1]H [N ]
e

∣∣
p
=
√

[N−1]H
[N ]
e

∣∣
p(−)

[N−1]H
[N ]
e

∣∣
p(+) (52)
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One can observe that with this approximation scheme the(N − 1)th-order IMA furnishes
exactly [N−1]H [N ]

e .
To test the numerical accuracy of this approximation scheme whenp < N − 1 we

compare the values of the alphabetical integral predicted by using IMA with numerical
values obtained with a numerical computation using the Monte Carlo algorithm for a given
primary structure. In equation (9) in section 2 we performed the integration over the bond
vectors before the integration over the Fourier transform parameters{�n}. One can see that
the integral over the set{�n} is a Gaussian integral. If one performs the integral over the
set {�n} before the integral over the bond vectors, one finds that the alphabetical integral
of the homopolymer can be written [2] as

J
(d)

homo(N) =
∫

[0,1](N−1)

N−1∏
n=1

dtn (1− t2n)
1
2 (d−3)

(
1

detM(N)({tn})
) 1

2

. (53)

Rigorously, with the method described above, equation (53) is valid only ford > 2 andd
integer. However, it is shown [3, section V] that this relation holds for non-integer value
of d with d > 2. In [3] we performed a numerical computation of the latter integral using
importance sampling with Monte Carlo algorithm for 28 values ofd taken between 2 and
8, and forN = 2 to 500. A very good fit of the numerical results forJ (d)homo(N) takes the
form

J
(d)

homo(N) = g(d)N (0)B(d)(A(d))N (54)

whereB(d) andA(d) are numerical values. Because the integral (3) is absolutely convergent,
the final result must be independent of the order in which we perform the integrations. Thus
these numerical evaluations give the value

[N−1]H [N ]
e ( 1

2; d2; 1
4) ' B(d)(A(d))N . (55)

On the other hand, the first-order IMA for the homopolymer gives
[N−1]H [N ]

e ( 1
2; d2; 1

4)
∣∣
1 = 2F1(

1
4)(1F1(

1
4))

N−2 (56)

therefore the numerical values predicted by first-order IMA are

A(d) ' 1F1(
1
4) and B(d) ' 2F1(

1
4)

(1F1(
1
4))

2
. (57)

The values predicted by the second-order IMA are, forN even

A(d) '
√
F2(

1
4,

1
4) and B(d) ' 1F1(

1
4)

F2(
1
4,

1
4)

(58)

and forN odd

A(d) '
√
F2(

1
4,

1
4) and B(d) ' 1F1(

1
4)2F1(

1
4)

(F2(
1
4,

1
4))

3
2

. (59)

The agreement between the numerical values and the values predicted by the IMA procedure
is very good [3]. For instance, ford = 3 one findsA(d) ' 1.051(3) and we have
1F1(

1
4) ' 1.089 97 and

√(
F2(

1
4,

1
4)
) ' 1.050 03, and ford = 4, A(d) ' 1.035(8) and

1F1(
1
4) ' 1.066 62 and

√(
F2(

1
4,

1
4)
) ' 1.036 09.

In summary, the analysis of the numerical results obtained for 13972 partition functions
computed in [3] shows that the accuracy of the first-order IMA is between 1–5%, while the
second-order IMA improves the accuracy [8].
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5. Conclusion

In this paper we had shown how to compute the canonical partition function of freely
jointed chains exactly for any primary structures as defined in section 1. This computation
take the classical Hamiltonian of the system as a starting point; thus the canonical partition
function given by equations (30), (31) and (32) results from a microscopic model, and is
valid for the large-volume limit (i.e. the free freely jointed chain). As shown in section 3,
this result is analytic for any applicationsσ which define the primary structure of this ideal
heteropolymer model.

This analytical result shows also that others models of ideal polymers are good
approximations of the freely jointed chains. For instance the random walk on a regular
lattice is a good approximation of the ideal homopolymer defined as a freely jointed chain.
The number of conformations<N of a random walk made ofN steps on a regular lattice
with z as coordination number is equivalent to the canonical partition function. A classical
result gives

<N = zN . (60)

This result agrees with the canonical partition function of equation (31) if we make
the approximation[N−1]H [N ]

e ( 1
2; d2; 1

4) ∼ 1, which is a good approximation according to
equation (55) and the numerical values of section 4 (see also [3]). To the accuracy of this
approximation, one can consider that the freely jointed chain is a random walk on a regular
lattice with an effective coordination numberzeff defined by

zeff =
(
T

T0

) 1
2 (d−1)

with T0 = 2

(
1√
2

0(d2)

0( 1
2)

)2/(d−1)
h̄2

mka2
. (61)

One can also verify that the critical exponentsγ and ν of the freely jointed chain,
respectively defined byQ(d)

{A} = Q0N
γ−1zN and 〈(r0 − rN)2〉 ∝ a2N2ν , are respectively

exactly equal to the values 1 and1
2 of the random walks on regular lattice [3].

Another class of model of ideal polymers is given by the matrix transfer formalism
applied to the end to end probability distribution considered as a Green function and often
taken as a Gaussian distribution [9, 10]. In this formalism the Green function satisfies a
diffusion-type equation and one can build an analogy with quantum mechanics; thus the
Green function of the polymer can be represented as a bilinear series

G

(
0

x0

∣∣∣∣∣
∣∣∣∣∣ NxN

)
=
∑
m

3N
mψ
+
m (x0)ψm(xN)

where theψm are the eigenfunction and3m the eigenvalues of the transfer operator, labelled
in decreasing order. The partition function is then given by

ZN =
∫
Dx0 DxN G

(
0

x0

∣∣∣∣∣
∣∣∣∣∣ NxN

)
.

In the case of a discrete spectrum, one can use the ground-state dominance approximation
which gives

ZN ∼ cte.3N
0 (62)

which is valid untilN log(30/31) � 1. Again we find that this model agrees with the
freely jointed chain if we make the approximation[N−1]H [N ]

e ( 1
2; d2; 1

4) ∼ 1 and take

30 =
(
T

T0

) 1
2 (d−1)

. (63)
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Because the result obtained for the freely jointed chain is analytical, one can also compute
the other eigenvalues3m by using the IMA.

If one describes the polymers as Brownian paths (see [11, chapter X]), the analytical
results obtained for this microscopic model might permit one to find the continuum limit
used in these descriptions explicitly. In particular, these results might be useful to understand
precisely how the microstructure of the polymer chain cancels the ‘ultraviolet’ divergences
which appear in the perturbative expansion. This very interesting point had not been studied
here, but will be the subject of a future paper.

The dimension of the physical space in which the polymer is embedded is necessarily
greater than or equal to 2. This restriction is induced by the expression of the dynamical
constraints obtained from the geometrical constraints [4]. The analytical continuation to
all real values ofd greater than 2 is done implicitly in all the computations of the paper.
In [3] and [8] we showed that the IMA defined in section 4 is still a good approximation for
non-integer values ofd. This model for an ideal heteropolymer seems to be another model
which generalizes the random walk to spaces with non-interger dimension. Comparison
with the recently proposed model,theD-dimensional spherically symmetric random walks
in non-integer dimension[12] has yet to be made. It is possible that both models are
complementary, and eventually equivalent. The weakness of the freely jointed chain model
as a random walk in non-integer dimension is that this model is defined only ford > 2; its
strength is in the analytical expression obtained from the fundamental principles of statistical
physics.
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